

BabaYaga - The Self Healing WordPress Malware
Author: Brad Haas

Publication Date: June 5, 2018

TLP: WHITE

Contact: press@wordfence.com

Contents

Summary 2

Introduction - Dissecting BabaYaga 3

BabaYaga Backdoor Code 4
Backdoor Analysis 6

Version info 6
Simple file upload 7
Complex File upload 8
WSO Shell 9
PHP code execution 9
Set C2 server 9
Bail out 10
Run time measurement 10
Self-relocation 11
Spread infection to other sites 12
Fetch content from C2 server 12
Backups and upgrades 12
Malware cleanup 13

BabaYaga Spam Code 14
Test that the malware runs during a page visit 16

WORDFENCE.COM

Render the site without running the malware 16
Generate a spam template 17
Fetch identifiers for search engine bots 17
Self-update 18
First-run diagnostics 18
SEO spam 19

Conclusion 21

Appendix - Indicators of Compromise 21
IPs and Hostnames 21
YARA Rules 22

Summary
Defiant Inc is the organization that makes Wordfence, the leading WordPress firewall and
malware detection product for WordPress.

The research team at Defiant recently discovered a new malware variant we have dubbed
"BabaYaga". This paper is a deep analysis of the BabaYaga malware variant. It is
authored by Brad Haas, a senior security analyst at Defiant, with assistance from the
Defiant team.

The audience for this research is threat analysts, WordPress developers and security or
operations team members who want to gain a deep understanding of emerging
WordPress threats. We have included indicators of compromise (IOCs) at the end of this
document, including YARA rules to aid with server-based detection of this malware.

The malware we dissect below is unique in that it is able to detect and remove other
malware from a site it infects. It is also able to install or upgrade WordPress. The
business model behind the BabaYaga malware variant is to create SEO spam pages,
promote those pages to search engines, generate search engine traffic to those pages
and then redirect that traffic to affiliate programs.

The malware is controlled by a central command and control server (C2 server) which
allows the attacker to control thousands of sites and use them to generate affiliate
revenue. This malware variant even goes to the trouble of reporting back to the C2 server
how many pages an infected site has indexed by Google, Bing, Yahoo and Yandex, to
determine the SEO value of an infected site.

2 WORDFENCE.COM

The Wordfence firewall and malware detection engine now has detection capability for all
malware discussed in this post. This detection capability has already been deployed to
our Premium customers. Our free customers will receive it in a maximum of 30 days.

Introduction - Dissecting BabaYaga
We see a lot of malware at Defiant. Much of it could be described as crude. The code is
low-quality, or it causes problems that break a site, or it makes no attempt to hide.

On the other hand, sometimes we see more sophisticated malware variants. In this paper,
we are going to examine malware that burrows down into a site and hides itself. It is
relatively well-written, and it demonstrates that the author has some understanding of
software development challenges, like code deployment, performance and management.

This malware variant can update WordPress, and it creates backups before doing its
work. It even removes other malware from the site it infects. We're calling it "BabaYaga",
named after a ​mythical creature from Slavic folklore​. The malware appears to be Russian
in origin. When its configuration file is decoded, at least one of the array keys is a
transliteration of a Russian word for "backlink". Many of the domains on the command
and control servers are .ru domains. Some of the core domains are registered to an email
address @yandex.ru. We also have a closely related malware variant that has comments
in the source code in Russian.

BabaYaga is WordPress-oriented. It can also infect Joomla and Drupal sites, or even
generic PHP sites, but it is most fully developed around Wordpress. There are two parts
to it. One part is the backdoor, which actually performs the infection and tries to maintain
access to the site for the attackers. The other part is spam code, which does the work
that generates revenue for the attacker.

3 WORDFENCE.COM

https://en.wikipedia.org/wiki/Baba_Yaga

First, we will examine the backdoor portion of the malware, then we will dive into the
spam engine.

BabaYaga Backdoor Code
Most of the backdoor code exists in a few files sprinkled around WordPress sites and
designed to blend in. We found one such file at ​/wp-admin/ms-menu.php​.

In the partial list of WordPress files in ​/wp-admin​ below, you can see how one named
ms-menu.php​ would not stand out when it is mixed in to the directory listing:

media-new.php

media-upload.php

media.php

menu-header.php

menu.php

moderation.php

ms-admin.php

ms-delete-site.php

ms-edit.php

ms-menu.php

ms-options.php

ms-sites.php

ms-themes.php

ms-upgrade-network.php

ms-users.php

my-sites.php

nav-menus.php

The backdoor file contains code taken from ​wp-admin/index.php​, with malicious
code added. The attackers did this so that if you examine the source code of
ms-menu.php​, it will look like a legitimate WP core file at first glance.

Let's compare the two files. The malicious ​ms-menu.php​ is on the left, and the
legitimate ​index.php​ is on the right:

4 WORDFENCE.COM

In the malicious file on the left, the forward slash has been removed from the ending of
the PHP comments at line 9. In other words, it turns the entire file into comments, which
are not executed. Syntax highlighting makes the differences easier to see, but
less-technical WordPress users probably won't be viewing files that way.

Of course, the attackers don't just create a commented-out version of a WordPress file.
They also add malicious code to it. The trick they use is to add their malicious code at
positions in the file where someone doing a cursory examination with a text editor may
not notice the code.

The largest part of the code is about 100 KB of base64-encoded data. Since that's a very
long line of code, they chose to add it to the part of the file with the longest lines (it starts
on line 57 with ​$esc_url​):

The vertical line in the screenshot is placed at 150 characters. This implies that the
attackers are hoping that an analyst will view this without text wrap or syntax highlighting
in their editor.

5 WORDFENCE.COM

You can also see a shorter part of their code at line 63, which they inserted where an
empty string exists in the real ​index.php​ file. Finally, note that the variable names they
chose look like legitimate code. It is easy to imagine this malware evading the notice of
an inexperienced analyst.

The attackers create a similar file at ​wp-includes/generalwtemplate.php​ (which
resembles the real WordPress file ​wp-includes/general-template.php​) and
finally at ​wp-content/wp-object-cache.php​, which takes code from​ ​version 2.0.2
of the memcached plugin​, which is no longer maintained. Each file has slightly different
methods of obfuscation (hiding malicious code), making it more likely that at least one of
them would survive detection by an anti-malware product.

While the obfuscated files differ, the deobfuscated code from each file is identical. It is
about 213 KB and 1441 lines long.

We ran it through a PHP code formatter to add newlines and indentation in order to make
it more readable, after which it was 3940 lines.

Backdoor Analysis

In this section, we will summarize the malware function and point out interesting
features. Most commands to this malware are sent in the query string, which is the part
at the end of the URL where keys and values are set, like:

/wp-admin/post.php?post=19496&action=edit

In the above example, the key ​post​ is set to ​19496​ and the key ​action​ is set to ​edit​.

The malware also makes use of the user-agent string, which is something the browser
sends to identify itself. In this case, the attackers haven't set a password to control
access to their malware, but for most commands they do check the user-agent string,
and the command will only run if it contains the text ​en.support.wordpress.com​.

Below we document some of the functions that the malware provides.

Version info

The first function we examine is a simple 'version check'. If the attacker sends a request
to the malware with the ​ver​ key set in the query string, then the malware prints out a
fake 404 error page which provides the attacker with the version of the malware.

6 WORDFENCE.COM

https://plugins.svn.wordpress.org/memcached/tags/2.0.2/object-cache.php
https://plugins.svn.wordpress.org/memcached/tags/2.0.2/object-cache.php
https://plugins.svn.wordpress.org/memcached/tags/2.0.2/object-cache.php

When rendered in the browser, it looks like a regular 404 page. We've probably all seen
many like this:

Notice in the source code image above, there is actually text added to the page which the
attackers hide by changing its color to white.

That hidden string displays the version of this malware - in this case,
VICTORIA_4_8_ALL_4_9_5​. It is not clear what "VICTORIA" refers to, but the numbers
clearly correspond to WordPress versions.

The string suggests that this malware was designed to work with WordPress sites
between 4.8 and 4.9.5, which was the latest version at the time we collected and analyzed
the malware. We have also observed samples that show ​VICTORIA_4_8_ALL_4_9_6​,
reflecting the WordPress version that was released on May 17, 2018.

Simple file upload

The next function the malware provides is the ability for the attacker to upload malicious
files. If the attacker sends a request to the malware with the ​postdone​ ​key set, the
malware shows a very simple file upload tool. Here is the source code for the function:

7 WORDFENCE.COM

When it receives a request with the ​postdone​ key, the malware displays a form that
allows the attacker to choose a file and upload it to the infected site:

If successful, all it shows is "+", and if not it shows "-". The uploaded file will be saved to
the same directory as the malware. This feature can be used manually by an attacker or
automatically by a scripted bot that mass uploads files to sites infected with this
malware variant.

Complex File upload

If the malware receives a request with the ​postfile​ key set, it runs a more complex file
upload tool. What appears is a stripped-down version of the file browser from the ​WSO
Shell​. This shell is well known among WordPress security professionals because it has
been used for years by malicious actors.

8 WORDFENCE.COM

This interface allows the attacker to browse up and down directories, and it also displays
existing files.

WSO Shell

But why include a few features from WSO Shell, when you can include the whole shell.
The malware includes WSO itself in a compressed and encoded format, to save space
and avoid detection. If the malware receives a request with the key ​wpsroot​ set, then the
malware will run a full-featured version of WSO Shell.

PHP code execution

If the malware receives a request with the ​code​ ​key set, then it will base64-decode and
execute whatever is passed as its value. This allows an attacker to upload arbitrary PHP
code and execute it on an infected site.

What is surprising about the code is that the malware author chose to send malicious
code using a GET request. The result of this design choice is that the encoded malicious
code will be visible in site access logs by a site admin or security analyst. It would have
been more stealthy to use a POST request because the POST body would not appear in
access logs. Usually, that is what we see from attackers sending an infected site
malicious code to execute.

Set C2 server

If the malware receives a request with the ​do​ key set, it will use the value as a command
and control (C2) server and will contact that server for instructions and data for its
operation. This allows the attacker to change which central C2 server they are using to
control thousands of sites infected with this malware.

9 WORDFENCE.COM

If the ​do​ key isn't set or if nothing is passed in it, then the malware has a default C2 server
hard-coded.

We can tell just from this that the malware communicates with its C2 server using HTTP
requests, and that some requests will have the path ​/pw/​ while others will have
/sserpdrow/​. Both are variations of "wordpress", but backwards.

Bail out

If none of the above actions are specified, the malware requires a ​level​ key to be
passed. The level refers to how many levels above the current directory the script should
operate.

So if the script resides in ​/public_html/wp-content​ and the level is set to 0, the
script will do its work in ​/public_html/wp-content​.

If the level is set to 1, it will work in ​/public_html​.

This appears to be another poor design choice by the malware author. This could have
been done using a "for" loop and without a limit on the number of possible directory
levels. But as it is, the level can be anything from 0 to 9.

If no level is specified, or if the user-agent string doesn't have the right value, then the
script bails out and shows another generic 404 page.

Runtime measurement

Performance is important, even for malware! This malware variant contains code that
measures the execution time.

10 WORDFENCE.COM

Before performing any operations, the malware records the current time. Then, at the end
of a function, it will measure the elapsed time and print it out as part of the output.
Presumably, this allows the attacker to determine if their malware is hitting any
performance bottlenecks or is having an adverse effect on the server's performance,
which may lead to it being discovered.

Self-relocation

This malware variant has the ability to move its location from one file to another. In the
code below, it is recording its own filename and storing its own source code.

Later on in the code, it will use this information either to replace itself after upgrade work,
or move itself from wherever it currently is to a new location.

11 WORDFENCE.COM

Spread infection to other sites

The malware is able to search for other sites and run its infection routine on them as well.
It traverses up as many levels as the attacker has specified, and looks for common
names of website root directories like ​public_html​, ​httpdocs​, and so on. It also
searches for directories that are named for domains. This allows the malware to spread
to other websites on the same server.

Fetch content from C2 server

Every time the malware runs, it fetches content from the C2 server. It downloads content
from four URLs:

● /sserpdrow/ipconfig​ - contents of ​IPconfig.ini​ or ​cache.ini​ file. See
"Spam Code" below for details.

● /sserpdrow/utilities​ - contents of ​utilities.js​ file. See "Spam Code"
below for details.

● /pw/template​ - code to append to ​wp-includes/template.php​. This code
checks for the presence of the backdoor in the infected site and restores it if it has
been removed.

● /pw/versionORG​ - the latest ​wp-includes/version.php​ file from
WordPress.

Backups and upgrades

One of the fascinating aspects of this malware is that it provides functions to install and
upgrade WordPress. This demonstrates that the attacker needs the sites that they infect
to be fully functional in order to profit from those sites.

If the sites are broken, the attacker considers themselves an owner of an asset that is not
performing and has created functionality in their malware to fix the issue.

The attacker can send a request to the malware that sets the ​wps​ key to a number
between 0 and 3. Depending on that setting, the malware takes one of the following
actions in the directory at the "level" specified above:

● Install WordPress -​ It contacts the C2 server to download both the PCLZip library
and a clean, stock copy of WordPress, minus the Akismet plugin, as a zip file. It
uses PCLZip to extract WordPress, then deletes PCLZip and the zip file.

● Create backups then upgrade WordPress -​ It renames the ​wp-admin​ and
wp-includes​ directories to ​wp-admin1​ and ​wp-includes1​. Then it makes a

12 WORDFENCE.COM

complete copy of ​wp-content​ as ​wp-content1​. Finally, it wipes out the
WordPress files in the site root directory and proceeds with the installation routine.

● Create backups, upgrade WordPress, then delete the backups
● Delete any existing backups

Malware cleanup

The author of this malware variant understands that a site infected with malware can be
costly. So, to ensure that their infected sites aren't affected by someone else's malware,
they have built in the ability to detect other malware and remove it from the site they have
infected.

This malware variant will check a target file for existing malware, and if it is detected, the
file will be deleted and replaced with a fresh, uninfected copy of the file.

It is possible that the authors of BabaYaga are also responsible for these other infections,
but it seems more likely that they want to find other, competing infections and get rid of
them.

We base this theory on two factors:

First, there is other code present in the BabaYaga backdoor that searches for older
versions of itself and updates them. All of that is very specific, while these strings are
much more general and likely to be from other, less sophisticated malware variants.

Second, the malware also contains code that checks for files named ​index.html​,
index.htm​, or ​index.asp​ containing the text "hacked". If it finds any of these, it deletes
them. Such files are likely to be defacement pages, which would reveal the presence of
malware on the site and interfere with what BabaYaga is trying to accomplish. So it wipes
them out.

Considering these facts along with the knowledge that the backdoor can backup and
update a WordPress site, it seems likely that this malware variant wants to have all its
infected sites to itself, and it ensures those sites are working properly.

Here is another section of code that cleans malware out of theme files:

13 WORDFENCE.COM

It can't just wipe out the files and replace them with stock WordPress ones, so instead it
uses regular expressions (regex) to try to remove just the malware from them.

14 WORDFENCE.COM

BabaYaga Spam Code
To summarize before moving on:

BabaYaga tries to infect as many sites as it can and survive any removal attempts. It
removes other malware, updates itself, and tries to make sure the site is updated and
working. It provides several backdoors to the hackers while still making a reasonable
attempt to remain hidden.

All of this, of course, is a means to an end. What is it actually doing? The answer lies in
the two files which it downloads from the C2 server. One of them is named either
IPconfig.ini​ or ​cache.ini​, depending on where it was able to be saved. The other
is ​utilities.js​.

The malware infects WordPress core files with code that includes these malicious files.
This ensures they are executed.

Both malicious files downloaded from the C2 server contain heavily obfuscated PHP
code. In each case, the code performs an almost identical set of tasks.

15 WORDFENCE.COM

The malware is included from core WordPress files, so it runs every time there is a visit to
the site. Again, we can't go into every detail of the malware's function, but we will hit the
highlights in our summary below. Below, we document a few functions of the code that is
downloaded from the C2 server.

Test that the malware runs during a page visit

If the URL query string contains the key ​this-is-the-test-of-door​ then the
malware prints out a test message:

DOORWAYISWORKTITLE

====================

DOORWAYISWORK

====================

DOORWAYISWORKCONTENT

Render the site without running the malware

If the query string contains the key ​ineedthispage​, then the malware won't run. The
attackers built this in so that they could fetch pages as if the site were not infected. They
did this so that they could create a spam template.

16 WORDFENCE.COM

Generate a spam template

In order to do its job to show spam on an infected site, the malware has to create a
template. It is designed to look in every way like a legitimate page on the site, except that
spam is filled in for page titles and content.

First, it creates a temporary new page with a random name, and with placeholders like
HEREISTITLE​ for the title and ​HEREISCONTENT​ for the content. It publishes the page
temporarily, and then immediately fetches the page as though it were a normal browser -
using the ​ineedthispage​ parameter so that the malware isn't executed.

So now it has a blank page from the site, with all of the formatting and theme elements
that appear on normal site pages. It strips out the randomized title and a few other things
like Google analytics tags. Finally it encodes and compresses all of this and saves it to a
template file. The name of the file is "template" interleaved with parts of an md5 hash of
the malware itself, for example: ​tem68c8f8pla68c8te​. After all of this, the malware
deletes the temporary post.

The malware uses core functions to generate the page, get details about it, and delete it.
For example, for WordPress sites, it uses ​wp_insert_post​, ​get_permalinks​, and so
on. It can also create spam templates on Drupal sites using functions like
node_object_prepare​, and on Joomla sites using the ​JFactory​ class.

Fetch identifiers for search engine bots

The BabaYaga malware is designed to recognize when a visitor to the site is a search
engine. It can do this one of three ways, and in each case, it can contact the C2 server to
get updates.

First, it can check a visitor's user-agent string, looking for text that's usually found in
search engine bots' user-agent strings. In order to know what text to look for, it contacts
the C2 server with ​ineednewuseragents=yes​ in the query string. The response is a
list like this:

bot

google

yandex

slurp

yahoo

msn

bing

17 WORDFENCE.COM

Later, it will check a visitor's user-agent for each of those terms. If any are present then it
will assume the visitor is a search engine crawler and act accordingly. Like the spam
template, this list of user-agents is encoded and compressed, and saved to a file like
usea36rag8c8f8aents​.

The second way the malware detects search engines is by checking the visitor's IP
address to see if it belongs to a search engine. To get the data for this test, it reaches out
to the C2 server using ​ineednewbotips=yes​ in the query string. The result is almost
100,000 lines of IP addresses and ranges. This list is also saved to a file, though it is not
encoded and compressed first - presumably because of the enormous size of the list.
The list is saved to a file with a name like ​boa368ti8f8a2596ps​.

The third way that this malware detects search engines is by checking the HTTP referrer
header, which can also sometimes indicate search engine-related traffic. To get a list of
what to detect in the referrer header, the malware contacts the C2 server using
ineednewreffs=yes​ in the query string, and encodes, compresses, and saves the
results into a file like ​re368cferef8a2596fre​.

Self-update

The malware can access a certain URL on the C2 server and retrieve the newest variant
of itself. Once it has downloaded the code, the malware runs a function to randomize
variable and function names in order to avoid detection and overwrites itself with the new
code.

First-run diagnostics

One of the more interesting aspects of the malware is what information the attackers
want to see the first time it runs. BabaYaga performs several tests and sends the results
to the C2 server in order to get proper configuration and content back. The tests include:

● Were all parts of the malware installation process successful?
● How many pages does this site have indexed on search engines? The malware

searches for the site on Google, Bing, and Yahoo (or Google and Yandex if it
detects the site's language as Russian). It collects the number of indexed pages
from each one and reports that to the C2 server. Presumably, sites with more
pages indexed will be more valuable to the attackers.

● Does the "doorway test" (mentioned above) work?
● Are the necessary functions available for whatever CMS the website is running?

For example, are functions like ​wp_insert_post​ et al. available on a WordPress
site?

18 WORDFENCE.COM

If everything is in order, the C2 server responds with settings that are saved into a file that
the malware will use going forward. The file follows the naming convention of the other
files, e.g. ​se368c8ftts​.

SEO spam

Finally, the purpose of this entire operation: ​Spam​.

The malware runs one of two ways, depending on whether the visitor is a search engine
bot or a real user who has clicked on one of the spam links.

If the visitor is a search engine bot, then the malware uses its template to show what
looks like a real page on the site, but with spam content instead of real content. It seems
to be snippets of text from websites relevant to the spam's subject, with a few links
sprinkled in. We used a plugin to alter our browser's user-agent string to look like
Googlebot in order to see what this looks like on a real infected site:

19 WORDFENCE.COM

The PDF version of the malware instead presents a PDF:

The result is that search engines index a lot of spam content on the site, causing the
linked pages to rank higher for the relevant search terms:

20 WORDFENCE.COM

By generating search engine spam, the attackers are attracting search engine traffic that
is redirected to affiliate programs that earn the attackers money.

If the visitor is a human instead of a search engine bot, then the malware renders the
same spam page but with one extra line at the top, adding a bit of Javascript that
immediately redirects the site visitor to an affiliate page, using an affiliate code. In this
case, it is an essay writing service. We found affiliate offers for as much as $15 per
successful conversion.

It is clear that the malware author's business model is to generate search engine traffic to
hacked websites, and then direct that traffic to affiliate programs in order to earn
revenue.

Conclusion
"BabaYaga" is an emerging threat that is more sophisticated than most malware. It
deeply infects a site, spreads to other sites, ensures that the infected site is in good
working order and will even remove other malware. It even has the ability to update or
reinstall WordPress. The business model is to create spam pages, promote them to
search engines and then redirect the resulting traffic to affiliate programs.

The​ ​Defiant​ team have performed a deep analysis of this malware. We have released
detection capability for this malware variant to our Premium​ ​Wordfence​ customers. Our
Premium customers received this update in real-time and our free community users will
receive it within 30 days.

Performing an in-depth analysis has also provided our team with a complete
understanding of how to clean and repair a site that has been infected by this
sophisticated malware variant. If you have been affected by this emerging threat, we
recommend you​ ​contact our site cleaning team to get your site back up and running​.

Appendix - Indicators of Compromise
We include the following indicators of compromise for BabaYaga. These are provided for
security analysts who would like to add detection capability to their systems

21 WORDFENCE.COM

https://www.defiant.com/
https://www.defiant.com/
https://www.wordfence.com/
https://www.wordfence.com/
https://www.wordfence.com/wordfence-site-cleanings/
https://www.wordfence.com/wordfence-site-cleanings/

IPs and Hostnames

If your web server is contacting one of the following hosts or IP’s, then it is likely that it is
compromised with BabaYaga:

● 7od.info (178.132.0.105)
● my.wpssi.com (89.38.98.31)

YARA Rules

We are including the following YARA compatible scanning rules to assist in detecting
BabaYaga. We have verified that these rules are compatible with ClamAV for server
based scanning.

rule WFYARAGEN_G4129_rules_1

{

 meta:

 description = "Malicious code meant to look like WordPress core"

 strings:

 $re =

/\@include\s*\(\s*ABSPATH\s*\.\s*WPINC\s*\.\s*['"]\/Requests\/IPconfig\.ini['"]

/ nocase

 condition:

 $re

}

rule WFYARAGEN_G4290_rules_1

{

 meta:

 description = "Matches a URL-encoded string with magic bytes fitting a

zlib stream"

 strings:

 $re = /^x\%(?:01|25|9C|DA|5E)[\%A-Za-z\d\.\-\+_]+$/ nocase

22 WORDFENCE.COM

 condition:

 $re

}

rule WFYARAGEN_G4361_rules_1

{

 meta:

 description = "Unique enough typo found in some of the backdoor code"

 strings:

 $re = /usecloack/ nocase

 condition:

 $re

}

rule WFYARAGEN_G4399_rules_1

{

 meta:

 description = "Not relying on the typo to detect the backdoor here"

 strings:

 $re =

/\$(?P<var>[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*)\s*\=\s*md5\s*\(\s*__FILE__

\s*\)\s*\;[\s\S]{1,500}?=\s*['"]ke['"]\s*\.\s*\$(?P=var)\s*\.\s*['"]ys['"]\s*\;

[^=]+\=\s*['"]use['"]\s*\.\s*\$(?P=var)\s*\.\s*['"]ragents/ nocase

 condition:

 $re

}

rule WFYARAGEN_G45_rules_2

{

 meta:

 description = "Catches generic backdoor - setting an option"

23 WORDFENCE.COM

 strings:

 $re =

/\$home_cwd\s*+=\s*+@getcwd\s*+\(\s*+\)\s*+;\s*+if\s*+\(\s*+isset\s*+\(\s*+\$_P

OST\s*+\[\s*+['"]\w{1,10}\s*+['"]\s*+\]\s*+\)\s*+\)\s*+@chdir\s*+\(\s*+\$_POST\

s*+\[\s*+['"]\w{1,10}['"]\s*+\]\s*+\)\s*+;\s*+\$cwd\s*+=\s*+@getcwd\s*+\(\s*+\)

\s*+;\s*+if\s*+\(\s*+\$os\s*+==\s*+['"]\s*+win\s*+['"]\s*+\)/ nocase

 condition:

 $re

}

rule WFYARAGEN_G1535_rules_2

{

 meta:

 description = "Obfuscated eval-gzinflate"

 strings:

 $re =

/@\$\w+\s*?=\s*?"\s*?e\\x76\\x61l\s*?\(\s*?\\x67\\x7Ai\\x6E\\x66\\x6C\\x61t\\x6

5\s*?\(/ nocase

 condition:

 $re

}

rule WFYARAGEN_G1832_rules_3

{

 meta:

 description = "Matches file used in various infections"

 strings:

 $re =

/^0\.5\.2\.2\s*?0\.83\.4\.1\s+?1\.0\.145\.2\s+?1\.0\.145\.210\s+?1\.0\.177\.126

/ nocase

 condition:

 $re

24 WORDFENCE.COM

}

rule WFYARAGEN_G736_rules_8

{

 meta:

 description = "Matches backdoor found in infections - assert-eval"

 strings:

 $re =

/if\s*\(\s*\w{1,255}\s*\(\$_(?:REQUEST|GET|POST|COOKIE)\s*\[\s*'\s*\w{1,255}\s*

'\s*\]\s*\)\s*\)\s*\w{1,255}\s*\(\s*stripslashes\s*\(\s*\$_(?:REQUEST|GET|POST|

COOKIE)\s*\[\s*bot\s*\]\s*\)\s*\)\s*;/ nocase

 condition:

 $re

}

rule WFYARAGEN_G736_rules_9

{

 meta:

 description = "Part of malware, basic backwards obfuscation"

 strings:

 $re =

/strrev\s*\(\s*['"]\s*=ecruos&wordpress\?\/moc\.yadot-syasse\/\/:ptth\s*['"]\s*

\)\s*;/ nocase

 condition:

 $re

}

rule WFYARAGEN_G4304_rules_1

{

 meta:

 description = "htaccess rule used to limit access to pages"

 strings:

25 WORDFENCE.COM

 $re = /RewriteCond \%\{HTTP_USER_AGENT\}

\!en\.support\.wordpress\.com\s+RewriteRule \.* \- \[R=404\]/ nocase

 condition:

 $re

}

rule WFYARAGEN_G4472_rules_1

{

 meta:

 description = "Double-var fn around base64 string"

 strings:

 $re =

/\$[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*\s*\(\s*\$[a-zA-Z_\x7f-\xff][a-zA-Z0

-9_\x7f-\xff]*\s*\(\s*['"][A-Za-z\d\/\+]+=*['"]\s*\)/

 condition:

 $re

}

26 WORDFENCE.COM

